CanSecWest/core06

Computer Security Research & Response Team

Outline

- Introduction
- Setup to collect malware
- Statistics
- Analysis
- Live Demo
- Future development
 - early warning/reacting system approaches
 - interactive malware database
- Conclusion

Definition of malware

- Umbrella term for malicious software
- Not to be confused with defective software
- Designed to infiltrate, damage, control or abuse computer systems without owner's consent
- Legal vocabulary: computer contaminant
- Also used: scumware
- Worms, virii, root kits, spyware, adware

Computer Security Research & Response Team

The tools used

- mwcollect by Georg Wicherski
 - (http://www.mwcollect.org)
- Nepenthes by nepenthes team
 - (http://nepenthes.sourceforge.net)
- Focus on nepenthes as mwcollect has merged with nepenthes
- Joint effort will result in a more powerful tool

rare

Things both tools have in common

- "Low interaction" honeypots
- passive
- catching autonomously spreading malware
- Running in non-native environments
- simulating network services
 - mwcollect: vulnerable built-in services
 - nepenthes: additionally 'pre-infected' services
- acting upon exploitation attempts
 - Downloading malware
- Both tools are Free and Open Source software

Outline – **Introduction** – Setup to collect malware - Slide 5 -

Tools - nepenthes

- Emulates native and non-native vulnerabilities
- Modular
 - Know a new exploit, add it as a module
- Support for geolocation information
- Support for submitting malware and additional information
 - Other instances of nepenthes (distributed installation)
 - XML-RPC

Research & Response Team

Vulnerabilities

- 'native' vulnerabilities:
 - RPC-DCOM (135, 139, 445, 593)
 - LSASS (445)
 - WINS (42)
 - MSSQL (1434)
 - ASN.1 library in IIS, SMB (80 and 445)
 - IIS (443)
 - NetDDE (139)
 - Message queueing (2103, 2105, 2107)
 - UPNP (5000)

- 3rd party vulnerabilities:
 - Kuang2 (17300)
 - Mydoom (3127)
 - Bagle (2745)
 - sasser_ftp (5554, 1023)
 - Sub7 (27374)

Outline – **Introduction** – Setup to collect malware - Slide 7 -

Nepenthes information flow - modules/handlers

Outline – **Introduction** – Setup to collect malware - Slide 8 -

Computer Security Research & Response Team

Categories of modules/handlers (1)

- Vulnerability module
 - Different modules for simulating the vulnerabilities
- Shellcode-handler
 - Per shellcode one module
 - Common Shellcode Naming Initiative

Outline – **Introduction** – Setup to collect malware - Slide 9 -

Outline – **Introduction** – Setup to collect malware - Slide 10 -

Outline – **Introduction** – Setup to collect malware - Slide 11 -

Computer Security Research & Response Team

Categories of modules/handlers (2)

- Geolocation-handler (some alternatives)
 - Resolves IP address to location information
- DNS-handler
 - Delivers resolved domain name
- Download-handler
 - Downloads through curl
 - Provides http and ftp protocol
 - Download ftp
 - Needed as curl is not the same than the messy M\$ client
 - Netcat is doing the job

Outline – **Introduction** – Setup to collect malware - Slide 12 -

Categories of modules/handlers (3)

- Download-handler cont'd
 - Download tftp
 - Support for tftp protocol
 - Max filesize 4MB
 - Can not handle DNS for the moment
 - Download nepenthes
 - Listens for file transfers from other nepenthes agents
 - Port can be set in the config file
 - transfer is simple and bandwidth optimised

Outline – **Introduction** – Setup to collect malware - Slide 13 -

Outline – **Introduction** – Setup to collect malware - Slide 14 -

Computer Security Research & Response Team

```
[28032006 16:36:31 spam net handler] <in virtual int32_t nepenthes::TCPSocket::doRecv()>
[28032006 16:36:31 spam mgr event] <in virtual uint32_t nepenthes::EventManager::handleEvent(nepenthes::Event*)>
[28032006 16:36:31 spam net handler] doRecv() 1460
[28032006 16:36:31 info down handler dia] Downloaded file tftp://212.120.228.59/service.exe 229376 bytes
[28032006 16:36:31 spam mgr submit] Download has flags 0
[28032006 16:36:31 info mgr submit] File dd3e4c7c94614a059263a219ff1b1339 has type MS-DOS executable (EXE), OS/2 or MS Windows

Socket

vulnerability
shellcode

Submit
raw file
nepenthes
norman
```

Download curl, ftp, ...

Outline – **Introduction** – Setup to collect malware - Slide 15 -

Categories of modules/handlers (4)

- Submit-handlers
 - Submit-file
 - Dumps to a file on HDD
 - submit-nepenthes
 - Submits information to a central server
 - Currently receiving from Telecom Italia Early Warning Team
 - Submit-norman
 - Submits file to norman sandbox
 - Submit XML-RPC
 - Submits information to applications outside nepenthes

Outline – **Introduction** – Setup to collect malware - Slide 16 -

Outline – **Introduction** – Setup to collect malware - Slide 17 -

Computer Security Research & Response Team

Outline – **Introduction** – Setup to collect malware - Slide 18 -

[28032006 16:36:31 debug spam fixme] <in virtual void nepenthes::SubmitNorman::Submit(nepenthes::Download*)> [28032006 16:36:31 debug spam fixme] <in virtual uint32 t nepenthes::SubmitNorman::handleEvent(nepenthes::Event*)> IP info Submit Socket raw file nepenthes norman xmlrpc Download

Outline – **Introduction** – Setup to collect malware - Slide 19 -

Additional information collected

- Extension to nepenthes stored in database
 - Platform information (p0f-sql)
 - P0f hack to submit information into DB
 - 4 AV product results from local machine
 - Extendable
 - Signatures hourly updated
 - 24 AV results from VirusTotal (added later)
 - 2 sandbox results
 - Submitted to http://sandbox.norman.no
 - Submitted to our own POC sandbox (added later)

Outline – **Introduction** – Setup to collect malware - Slide 20 -

Full information set collected

- Various static analysis
 - file, upx, hexdump, strings, objdump
- Number of hits
- First/last seen
- Number/names of recognized virii
- Sandbox results
- Hex-dump of file (browseable)
- IP/URL from where fetched
- System
- Latitude, Longitude, Country, City

Outline – **Introduction** – Setup to collect malware - Slide 21 -

Intro – **Setup to collect malware** – Statistics - Slide 22 -

Intro – **Setup to collect malware** – Statistics - Slide 23 -

Intro – **Setup to collect malware** – Statistics - Slide 24 -

Intro – **Setup to collect malware** – Statistics - Slide 25 -

Intro – **Setup to collect malware** – Statistics - Slide 26 -

Intro – **Setup to collect malware** – Statistics - Slide 27 -

- There are three kinds of lies: lies, damned lies, and statistics. Benjamin Disraeli (1804 - 1881)
- 1st set, collected with mwcollect:
 - Approx 600,000 files (9.2 GB)
 - 542 unique (80 MB)
 - 529 executables
 - File length: 100 to 1,145,856 Bytes
 - Time frame: 6 weeks (April June 2005)
 - 503 MS-Windows executables
 - 26 MS DOS executables

Setup to collect malware – **Statistics** – Analysis - Slide 28 -

- 1st set continued
 - 52% of the files were detected by all 4 virus scanners
 - 17% of the files were detected only by 3 virus scanners
 - 25% of the files were detected only by 2 virus scanners
 - 3% of the files were detected only by 1 virus scanner
 - 2% were defective
- When scanning files later -> some files detected as Zotob
 - During collecting time there was no Zotob signature!
 - false positive?
 - test-run?

Setup to collect malware – **Statistics** – Analysis - Slide 29 -

- 2nd set, collected with nepenthes:
 - 2,079 unique files
 - 209,327 malware downloads complete
 - 13% using anti debug/emulation techniques
 - 1,852 MS-Windows executables
 - 227 MS-DOS executables
 - File length: 1,024 1,323,222 (1.3MB) bytes
 - Time frame: December 2005 March 2006

Setup to collect malware – **Statistics** – Analysis - Slide 30 -

- Result of immediate scan:
 - Results of virus scan, directly after reception with up-to-date signatures:
 - 69.5% Norman Sandbox
 - 68.5% Bitdefender
 - 58.0% Antivir
 - 49.5% F-Prot
 - 31.8% ClamAV
 - Are signature based systems really future-proof?

is

Results of re-scan:

- 96.1% Panda

91.2% Norman

- 85.9% Antivir

- 85.9% Avira

- 85.1% Kaspersky

- 84.7% DrWeb

- 84.5% Fortinet

- 83.9% McAfee

- 83.8% BitDefender

- 80.4% VBA32

- 80.1% CAT-QuickHeal

- 79.8% NOD32v2

- 78.9% UNA

- 77.2% AVG

- 76.3% Symantec

- 75.7% Ewido

- 72.4% F-Prot

- 65.9% Sophos

- 65.1% TheHacker

64.1% Ikarus

- 57.2% eTrust-Inoculate

- 54.3% Avast

- 50.7% ClamAV

Computer Security Research & Response Team

Packing/Encrypting statistics using bzip2

Setup to collect malware – **Statistics** – Analysis - Slide 33 -

Packing/Encrypting statistics:

Setup to collect malware – **Statistics** – Analysis - Slide 34 -

Analyzing Malware - Side-effects

- Malware hides from the analyzer and obfuscates its techniques
- Automated processes not 100% reliable
 - Anti-virus products, current sandbox techniques
- Last resort: manual investigation
 - Disassembler, Debugger, file monitors, registry monitors, Virtual Machines
 - Very time consuming and/or requires high skills

Statistics – **Analysis** – Live Demo - Slide 35 -

Ways to fool the analyzer

- Modified binary
 - (multiple) Packing
 - Encrypting
 - Header crippling
- Test presence of Debugger/Disassembler
 - SoftICE, OllyDbg, Breakpoints, Vmware, ...
 - http://www.honeynet.org/papers/bots/botnet-code.html
- Usage of file droppers
 - Dropper downloads malware and executes it
 - Malware makes usage of other malware already downloaded (e.g. browser hijacker vmmon32.exe)

Statistics – **Analysis** – Live Demo - Slide 36 -

Automated analysis

Virus Total:

- Free service scanning files with 24 AV products
- Submits by default samples to AV vendors
- Automated submission through extensions
- Virus Total sends back mail with report
- Most of the time at least one AV product finds malware
- Cooperativeness to extend results (e.g. XML, more details, ...)
- Negative point:

An SES GLOBAL Company

 Slow – agreed on a 60s interval when sending all files (adding more resources in the future)
Statistics – Analysis – Live Demo

- Slide 37 -

Response

Automated analysis

- Norman sandbox:
 - APIs simulating a Windows Computer
 - Some of the APIs simulate the Network/Internet connectivity
 - Automated submission through nepenthes
 - Sandbox sends back mail with report
 - Negative points:
 - often not working because of filled up mail queue
 - Necessity to resubmit
 - Often trapped into anti-debug code
 - Have to trust the output!

Statistics – **Analysis** – Live Demo - Slide 38 -

Norman Output

Googlesetup.exe : [SANDBOX] contains a security risk - W32/Spybot.gen3 (Signature: W32/Spybot.AHWZ)

[General information]

- * **Locates window "NULL [class mIRC]" on desktop.
- * File length: 133120 bytes.
- * MD5 hash: df2eaaf757053a4a0209c4668efd8d1c.

[Changes to filesystem]

- * Creates file C:\WINDOWS\SYSTEM32\Googlesetup.exe.
- * Deletes file 1.

[Changes to registry]

- * Creates value "Google service"="Googlesetup.exe" in key
- "HKLM\Software\Microsoft\Windows\CurrentVersion\Run".

[...]

[Network services]

- * Looks for an Internet connection.
- * Connects to "der.ifconfig.us" on port 7000 (TCP).
- * Connects to IRC Server.

[Signature Scanning]

* C:\WINDOWS\SYSTEM32\Googlesetup.exe (133120 bytes) : W32/Spybot.AHWZ.

Statistics – **Analysis** – Live Demo - Slide 39 -

Computer Security Research & Response Team

Automated analysis using wine (1)

- wine as a (cheap) sandbox approach
 - Why?
 - Signatures suck
 - wine executed 72% out of 2199 malware files
 - How?
 - Compare .wine directory with an unmodified one
 - Use debug and trace messages from wine
 - Create report from what is known (~signature)
 - Security?
 - Outbreak is possible include an assembler program that executes linux system calls via int 80h in the .text section of the windows executable
 - we're using user-mode-linux

Statistics – **Analysis** – Live Demo - Slide 40 -

Automated analysis using wine (2)

Statistics – **Analysis** – Live Demo - Slide 41 -

Live Demonstration

http://nepenthes.csrrt.org:10080/nepenthes/

Analysis – **Live Demo** – Future development - Slide 42 -

Developments and future steps (1)

- Early warning / reacting system (so far implemented)
 - Monitoring and visualization of outbreak waves
 - Live export of most common attacker IP list
 - To be imported into Firewalls, IDS, ...
 - Live export of most common download locations
 - To be imported into Proxies, Firewalls, IDS
 - Company-wide hash-scan with Encase
- Better virus scanner comparison
 - Automatic re-scan of malware files with each signature update (partly implemented)

sion

Computer Security Research & Response Team

Developments and future steps (2)

- Automated analysis:
 - Enhance wine sandbox results
 - rewriting DLLs to log even more
 - Also very interesting:
 - Diploma Project about automated behavior analysis
 - http://pi1.informatik.uni-mannheim.de/diplomas/show/59
 - Extensive API-hooking approach
- MalwareDB
 - A research database for preserving malicious computer programs

Live Demo – **Future development** – Conclusion - Slide 44 -

Introduction to Malware DB

- "Fred, where is the DVD with the malware collected in January?"
- "Somewhere on my desk? ... I was sure that it was laying on my desk..."
- "I really need that to test something..."

- MalwareDB Scope
 - Simple storage mechanism to archive malware
 - Easy way to tag and classify the malware
 - Multiple interfaces to query and get the malware
 - Not a signature database
 - Not exhaustive

Live Demo – **Future development** – Conclusion - Slide 45 -

MalwareDB data store (v1)

- MalwareDB only contains metadata for each malware
- Files are stored on the filesystem
- Malware is identified by SHA-2 (256bits)
- For managing collisions (if any), MalwareDB keeps track of:
 - the original filename
 - information about file (like magic code, mime/type...)
- Source is a unique field to identify the origin of the malware
 - who or what is submitting the malware
- MalwareDB supports free tagging for classification, excluded are some reserved prefixes like RFC, CVE, OSVDB,..

Live Demo – **Future development** – Conclusion - Slide 46 -

Query the MalwareDB

- Using the web interface : http://www.csrrt.org/maldb/index.pl
- Using the RSS feed: http://www.csrrt.org/ml/rss/latest.xml
- Using the DNS interface to check the existence of a malware from its fingerprint:
 - dig -t TXT 3d5a9097cda0565ccc4a0e8aaa703b8543.187 \ 31eb80bce12e8d9958f115fa468.sha1.maldb.csrrt.org
 - 63 bytes have to be separated by a dot to split into "subdomains", server reassembles accordingly
 - You could use the DNS interface as an RBL-like interface for early detection/warning but don't forget that the database is not exhaustive.

Security
Research
&
Response
Team
CSRRT-L

Conclusion about the MalwareDB

- First try for a malware database (far from being perfect)
- Legal implication (copyright, computer security,...)
- Could be used by attackers as a repository (measure must be taken to avoid that)

Response Team

Conclusions

- Nepenthes provides a nice way to collect malware
- It can also be used to block intruders/malicious URLs
- Early reaction is possible for the attacking vectors implemented in nepenthes
- Signature based systems definitely not fulfilling requirements
- Signature based plus behavioral analysis is definitely a way to pursue
- Automated analysis is a need, especially when receiving large feeds
- Hopefully increased joint-effort for sandbox-alike tools in the future

Future Development – **Conclusion** – The End - Slide 49 -

Thanks to

- mwcollect.org
 - Thorsten Holz, Markus Kötter
 - Paul Baecher, Georg Wicherski
- CSRRT-LU
 - Alexandre Dulaunoy
 - Gerard Wagener
- Hispasec Sistemas (VirusTotal)
 - Julio Canto
- Telecom Italia (Early Warning Team)
 - Gaetano Zappulla

Questions?

Computer Security Research & Response Team

Thank you

Fred Arbogast

fred@thinkingsecure.com PGP:EADO 28E9 8381 F717 68BC 22CE 78FC A4A2 EEOA 5D3C

W32/10111.gen1.lux

Member of CSRRT-LU www.csrrt.org

SPEAKER

Sascha Rommelfangen

sascha@rommelfangen.de PGP: 9BF3 E35F 99BE 63CD B3CD 3C53 78C9 DCF1 A05D 2ED6

W32/101010.gen1.ger

Member of CSRRT-LU www.csrrt.org

SPEAKER

Computer Security Research & Response Team

CSRRT-LU